Search results for " Liquid Metal"

showing 5 items of 5 documents

Space Thermoacoustic Radioisotopic Power System, SpaceTRIPS: The Magnetohydrodynamic Generator

2021

Electricity production is a major problem for deep space exploration. The possibility of using radioisotope elements with a very long life as an energy source was investigated in the framework of an EU project “SpaceTRIPS”. For this, a two-stage system was tested, the first in which thermal energy is converted into mechanical energy by means of a thermoacoustic process, and the second where mechanical energy is converted into electrical energy by means of a magnetohydrodynamic generator (MHD). The aim of the present study is to develop an analytical model of the MHD generator. A one-dimensional model is developed and presented that allows us to evaluate the behavior of the device as regards…

Environmental effects of industries and plantsRenewable Energy Sustainability and the EnvironmentMHDGeography Planning and Developmentenergy convertersthermoacousticsTJ807-830Management Monitoring Policy and Lawmagnetohydrodynamics; MHD; liquid metals; thermoacoustics; energy converters; deep space flightsTD194-195Renewable energy sourcesEnvironmental sciencesdeep space flightsGE1-350magnetohydrodynamicsliquid metalsSustainability
researchProduct

Parametric thermal analysis for the optimization of Double Walled Tubes layout in the Water Cooled Lithium Lead inboard blanket of DEMO fusion reactor

2019

Abstract Within the roadmap that will lead to the nuclear fusion exploitation for electric energy generation, the construction of a DEMOnstration (DEMO) reactor is, probably, the most important milestone to be reached since it will demonstrate the technological feasibility and economic competitiveness of an industrial-scale nuclear fusion reactor. In order to reach this goal, several European universities and research centres have joined their efforts in the EUROfusion action, funded by HORIZON 2020 UE programme. Within the framework of EUROfusion research activities, ENEA and University of Palermo are involved in the design of the Water-Cooled Lithium Lead Breeding Blanket (WCLL BB), that …

HistoryNuclear Fusion Blanket Liquid Metal Thermal AnalysisDouble walledMaterials scienceNuclear engineeringWater cooledchemistry.chemical_element02 engineering and technologyFusion powerBlanket021001 nanoscience & nanotechnology01 natural sciences7. Clean energy010305 fluids & plasmasComputer Science ApplicationsEducationchemistry0103 physical sciencesLithium0210 nano-technologyLead (electronics)Thermal analysisSettore ING-IND/19 - Impianti NucleariParametric statisticsJournal of Physics: Conference Series
researchProduct

A comparison between the chemical behaviour of lead-gold and lead-bismuth eutectics towards 316L stainless steel

2013

Radiochimica acta, 101 (10)

Liquid metalLBEScanning electron microscopeIsothermal02 engineering and technology01 natural sciencesIsothermal process010305 fluids & plasmasCorrosion0103 physical sciences540 ChemistrySpallationPhysical and Theoretical ChemistryEutectic systemChemistryChromium AlloysLGEMetallurgySpallation targetAtmospheric temperature range021001 nanoscience & nanotechnologyCorrosion; LGE; LBE; Isothermal; SS 316L; Liquid metal; Spallation targetLiquid metalCorrosion570 Life sciences; biology0210 nano-technologySS 316L
researchProduct

Particle transport in recirculated liquid metal flows

2008

PurposeAims to present recent activities in numerical modeling of turbulent transport processes in induction crucible furnace.Design/methodology/approach3D large eddy simulation (LES) method was applied for fluid flow modeling in a cylindrical container and transport of 30,000 particles was investigated with Lagrangian approach.FindingsParticle accumulation near the side crucible boundary is determined mainly by the ρp/ρ ratio and according to the presented results. Particle settling velocity is of the same order as characteristic melt flow velocity. Particle concentration homogenization time depends on the internal flow regime. Separate particle tracks introduce very intensive mass exchang…

Liquid metalMaterials scienceFurnacesDewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und MaschinenbauMechanical engineeringHomogenization (chemistry)ModellingPhysics::Fluid DynamicsSettlingRecirculated liquid metal flowsFluid dynamicsddc:510Electrical and Electronic EngineeringCrucible furnacesMelt flow indexTurbulent transport processesInternal flowTurbulenceApplied MathematicsLarge eddy simulationParticle physicsMechanicsComputer simulationDewey Decimal Classification::500 | Naturwissenschaften::510 | MathematikComputer Science ApplicationsComputational Theory and Mathematicsddc:620SimulationLiquid metalsNumerical analysisParticles (particulate matter)Large eddy simulationCOMPEL - The international journal for computation and mathematics in electrical and electronic engineering
researchProduct

Recent Progress in the WCLL Breeding Blanket Design for the DEMO Fusion Reactor

2018

The water-cooled lithium-lead (PbLi) breeding blanket is one of the candidate systems considered for the implementation in the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This concept employs PbLi liquid metal as tritium breeder and neutron multiplier, water pressurized at 15.5 MPa as the coolant, and EUROFER as the structural material. The current design is based on the single module segment approach and follows the requirements of the DEMO-2015 baseline design. The module is constituted by a basic toroidal-radial cell that is recursively repeated along the poloidal direction where the liquid metal flows along a radial-poloidal path. The heat generated by the fusion r…

liquid metal technologyNuclear and High Energy PhysicsLiquid metalPower stationLayoutComputer scienceNuclear engineeringNeutronBlanket01 natural sciences7. Clean energy010305 fluids & plasmasBreeding blanket (BB); Demonstration Power Plant (DEMO); fusion reactor design; liquid metal technology; Nuclear and High Energy Physics; Condensed Matter PhysicsBreeding blanket (BB)Conceptual design0103 physical sciencesliquid metal technology.Nuclear fusion010306 general physicsSettore ING-IND/19 - Impianti NucleariNuclear and High Energy PhysicMetalDemonstration Power Plant (DEMO)Fusion powerCondensed Matter PhysicsManifoldbreeding blanket; DEMO; fusion reactor design; liquid metal technologyCoolantElectricity generationCoolantPower generationfusion reactor designIEEE Transactions on Plasma Science
researchProduct